Paper 4F: Further Mechanics 2 Mark Scheme

Question	Scheme	Marks	AOs
1(a)	$Total mass = \int_0^{15} 10 \left(1 - \frac{x}{25} \right) dx$	M1	2.1
	$= \left[10x - \frac{x^2}{5}\right]_0^{15}$	A1	1.1b
	$=150 - \frac{225}{5} = 105 (\text{kg}) *$	A1*	1.1b
		(3)	
(b)	Taking moments about the base: $\int_0^{15} 10x \left(1 - \frac{x}{25}\right) dx$	M1	3.4
	$= \left[5x^2 - \frac{2}{15}x^3\right]_0^{15} (= 675)$	A1	1.1b
	\Rightarrow 105 $d = 675$	M1	3.4
	$d = 6.43 \text{ (m)} 6\frac{3}{7} \text{ (m)}$	A1	1.1b
		(4)	
		(7 n	norke)

(7 marks)

Notes:

(a)

M1: Use integration (usual rules)

A1: Correct integration

A1*: Use limits and show sufficient working to justify given answer

(b)

M1: Use the model to find the moment about the base (usual rules for integration)

A1: Correct integration

M1: Use the model to complete the moments equation

Require 105 and their 675 used correctly

A1: 6.43 or better

Question	Scheme	Marks	AOs
2	$\begin{array}{c} 4a \\ \\ \end{array}$		
	Complete overall strategy	M1	3.1b
	Resolve vertically	M1	3.3
	$mg + F\cos\theta = R\sin\theta$	A1	1.1b
	Horizontal equation of motion	M1	3.3
	$mr\omega^2 = R\cos\theta + F\sin\theta$	A1	1.1b
	Use of limiting friction since maximum ω	M1	3.3
	Substitute for trig ratios: $\frac{3a\omega^2}{2g} = \frac{9}{2}$	M1	1.1b
	Maximum $\omega = \sqrt{\frac{3g}{a}}$	A1	1.1b

(8 marks)

Notes:

M1: Overall strategy to form equation in ω only e.g.

consider vertical and horizontal motrion and limiting friction

M1: Needs all 3 terms. Condone sign errors and sin/cos confusion

A1: Correct unsimplified equation

M1: Needs all 3 terms. Condone sign errors and sin/cos confusion

A1: Correct unsimplified equation

M1: Seen or implied

M1: Substitute to achieve equation in a, ω and g only

A1: Or equivalent exact form

Question	Scheme			Marks	AOs
3(a)		mass	c of m from O		
	cylinder	$4\pi a^2 h$	$\frac{h}{2}$		
	hemisphere	$\frac{2}{3}\pi a^3$	$\frac{3}{8}a$		
	V	$\frac{2}{3}\pi a^3$ $4\pi a^2 h - \frac{2}{3}\pi a^3$	d		
	Mass ratios			B1	1.2
	Correct distances			B1	1.2
	Moments about a diam	eter through O		M1	2.1
	$4\pi a^2 h \times \frac{h}{2} - \frac{2}{3}\pi a^3 \times \frac{3}{8}a$	()		A1	1.1b
	$d = \frac{h^2 - \frac{a^2}{8}}{2h - \frac{a}{3}} = \frac{3(8h^2 - a^2)}{8(6h - a)} $ *			A1*	2.2a
				(5)	
(b)	6	2.57a Ø 2.43a 2a			
	$h = 5a \Rightarrow d = 2.573a$	a		B1	1.1b
	About to topple so c of		t	M1	2.2a
	$\Rightarrow \tan \phi$	$y = \frac{2a}{5a - 2.573a}$		A1ft	1.1b
		$\phi = 39$.	5° or 0.689 rads	A1	1.1b
				(4)	narks)

Question 3 notes:

(a)

B1: Correct mass ratiosB1: Correct distances

M1: All three terms & dimensionally correct. Could use a parallel axis but final answer must be for the distance from *O*

A1: Correct unsimplified equation

A1*: Deduce the given answer. Their working must make it clear how they reached their answer

(b)

B1: Distance of com from baseM1: Condone tan the wrong way up

A1ft: Correct unsimplified expression for trig ratio for ϕ following their d

A1: 39.5° or 0.689 rads

Question	Scheme	Marks	AOs
4(a)	Equation of motion: $1800 - 2v^2 = 500a$ (when seen)	B1	2.1
	Select form for a : = 500 $\frac{dv}{dt}$	M1	2.5
	$\int \frac{2}{500} dt = \int \frac{1}{900 - v^2} dv = \frac{1}{60} \int \frac{1}{30 + v} + \frac{1}{30 - v} dv$	M1	2.1
	$\frac{t}{250} = \frac{1}{60} \ln(30 + v) - \frac{1}{60} \ln(30 - v) \ (+C)$	A1	1.1b
	$T = \frac{25}{6} \ln \left(\frac{30 + 10}{30 - 10} \right) = \frac{25}{6} \ln 2 *$	M1 A1*	2.1 2.2a
		(6)	
(b)	Equation of motion: $500v \frac{dv}{dx} = 1800 - 2v^2$	M1	2.5
	$\int \frac{500v}{1800 - 2v^2} \mathrm{d}v = \int 1 \mathrm{d}x$	M1	2.1
	$-125\ln(1800 - 2v^2) = x \ (+C)$	A1	1.1b
	Use boundary conditions: $x = -125 \ln 1600 + 125 \ln 1800$	M1	2.1
	$x = 125 \ln \frac{9}{8} \text{ (m)}$	A1*	2.2a
		(5)	

(11 marks)

Notes:

(a)

B1: All three terms & dimensionally correct

M1: Use of correct form for acceleration to give equation in v, t only

M1: Separate variables and integrate

A1: Condone missing *C*

M1: Use boundary conditions correctly

A1*: Show sufficient working to justify given answer and a 'statement' that the required result has been achieved

(b)

M1: Correct form of acceleration in the equation of motion to give equation in v, x only

M1: Separate variables and integrate

A1: Condone missing *C*

M1: Extract and use boundary conditions

A1*: Show sufficient working to justify given answer and a 'statement' that the required result has been achieved

Question	Scheme			Marks	AOs
5(a)		Mass	From AD		
	Rectangle	$8a^2$	a		
	Semicircle	$\frac{1}{2}\pi a^2$	$\frac{4a}{3\pi}$		
	Sign	$a^2\left(8-\frac{\pi}{2}\right)$	h		
	Mass ratios			B1	1.2
	Moments about AD			M1	2.1
	$a^2 \left(8 - \frac{\pi}{2}\right) h = 8a^2 \times$	$a - \frac{1}{2}\pi a^2 \times \frac{4a}{3\pi} \bigg(=$	$8a^3 - \frac{2}{3}a^3 = \frac{22}{3}a^3$	A1	1.1b
	$\Rightarrow h = \frac{22}{3}$	$-a \div \left(8 - \frac{\pi}{2}\right) = \frac{4}{3(16)}$	(4a) *	A1*	2.2a
				(4)	
(b)	Moments about A $2aT = \frac{44a}{3(16-\pi)}W$			M1	3.1b
	$T = \frac{hW}{2a}$	$=\frac{22W}{3(16-\pi)}$		A1	1.1b
	, , ,				
(c)	B B D				
	Take moments about AB	to find distance o	f com from AB	M1	3.1b
	$8a^2 \times 2a - \frac{1}{2}\pi a^2 \times d = 8$	$(3-\frac{1}{2}\pi)a^2 \times v$		A1	1.1b
		$v = \frac{32a - \pi}{16 - \pi}$	<u>d</u>	A1	1.1b
	Correct trig for the given			M1	3.1b
	$\tan \alpha = \frac{11}{18} = \frac{h}{v} = \frac{44a}{3(32a - 4a)}$	$\frac{a}{-\pi d}$		A1ft	1.1b
	$(24a = 32a - \pi d, 8a =$	$=\pi d$) $d=\frac{8a}{\pi}$		A1	1.1b
				(6)	
				(12 n	narks)

Question 5 notes:

(a)

B1: Correct mass ratios

M1: Need all three terms, must be dimensionally correct

A1: Correct unsimplified equation

A1*: Show sufficient working to justify the given answer and a 'statement' that the required result has been achieved

(b)

M1: Could also take moments about B or about the c.o.m. and use

A1: cso

(c)

M1: All terms and dimensionally correctA1: Correct unsimplified equation

A1: Or equivalent

M1: Condone tan the wrong way up

A1: Equation in a and d; follow through on their v

A1: cac

Question	Scheme	Marks	AOs
6(a)	O θ R M		
	Conservation of energy	M1	2.1
	$\frac{1}{2}mv^2 + mga(1-\cos\theta) = \frac{1}{2}m\left(\frac{7}{2}ga\right)$	A1	1.1b
	$v^2 = ga\left(\frac{3}{2} + 2\cos\theta\right)^*$	A1*	2.2a
		(3)	
(b)	Resolve parallel to OB and use $\frac{mv^2}{a}$	M1	3.1b
	$R - mg\cos\theta = \frac{mv^2}{a}$	A1	1.1b
	Use R= 0 $g\cos\theta = -\frac{v^2}{a}$	M1	3.1b
	Solve for $\theta \Rightarrow g\cos\theta = -g\left(\frac{3}{2} + 2\cos\theta\right)$	M1	1.1b
	θ = 120°	A1	1.1b
		(5)	
(c)	Any appropriate comment e.g. the hoop is unlikely to be smooth	B1	3.5b
(6)		(1)	

Question	Scheme	Marks	AOs
6(d)	At rest $\Rightarrow v = 0$	M1	3.1b
	$\Rightarrow \cos\theta = -\frac{3}{4}$	A1	1.1b
	Acceleration is tangential		3.1b
	Magnitude $\left g\cos\left(\theta-90\right)\right = 6.48 \text{ m s}^{-2} \text{ or } \frac{\sqrt{7}}{4}g$		1.1b
	At $\left(\cos^{-1}\left(-\frac{3}{4}\right) - 90 = \right) 48.6^{\circ}$ to the downward vertical	A1	1.1b
		(5)	

(14 marks)

Question 6 notes:

(a)

M1: All terms required. Must be dimensionally correct

A1: Correct unsimplified equation

A1*: Show sufficient working to justify the given answer and a 'statement' that the required result has been achieved

(b)

M1: Resolve parallel to *OB*

A1: Correct equation

M1: Use R = 0 seen or implied

M1: Solve for θ

A1: Accept $\frac{2\pi}{3}$

(c)

B1: Any appropriate comment e.g.

- hoop may not be smooth;

- air resistance could affect the motion

(d)

M1: v = 0 seen or implied

A1: Correct equation in θ

M1: Correct direction for acceleration

A1: Accept 6.48, 6.5 or exact in g

A1: Accept 0.848 (radians)

Question	Scheme	Marks	AOs
7(a)	⟨ — 6m — — →		
	20 N 50 N B		
	$T_A = \frac{20e}{2}, T_B = \frac{50(2-e)}{2}e$	M1	3.1a
	In equilibrium $T_A = T_B$, $10e = 25(2-e)$	M1	3.1a
	$(35e = 50), e = \frac{10}{7}$	A1	1.1b
	Equation of motion for P when distance x from equilibrium position towards B :	M1	3.1a
	$3.5\ddot{x} = T_B - T_A = \frac{50(2 - e - x)}{2} - \frac{20(e + x)}{2}$	A1 A1	1.1b 1.1b
	$= \frac{50\left(\frac{4}{7} - x\right)}{2} - \frac{20\left(\frac{10}{7} + x\right)}{2}$		
	$\Rightarrow 3.5\ddot{x} = -35x, \ddot{x} = -10x$ and hence SHM about the equilibrium position	A1	3.2a
		(7)	
(b)	$Amplitude = 2 - \frac{10}{7} = \frac{4}{7}$	B1 ft	2.2a
	Use of max speed = $a \omega$	M1	1.1b
	$= \frac{4}{7}\sqrt{10} = 1.81 \text{ (m s}^{-1})$	A1 ft	1.1b
		(3)	

Question	Scheme	Marks	AOs		
7(c)	Nearer to A than to B: $x < -\frac{3}{7}$	B1	3.1a		
	Solve for $\sqrt{10}t$: $\cos \sqrt{10}t = -\frac{3}{4}$, $\sqrt{10}t = 2.418$	M1	3.1a		
	Length of time: $\frac{2}{\sqrt{10}}(\pi - 2.418)$				
	0.457 (seconds)	A1	1.1b		
	Alternative: $\frac{3.864 - 2.419}{\sqrt{10}} = 0.457$				
	Alternative:				
	$x = \frac{4}{7}\sin\sqrt{10}t = \frac{3}{7} \implies \sqrt{10}t = 0.8481 \text{ or } \sqrt{10}t = 2.29353$				
	$t_1 = 0.2682, \ t_2 = 0.72527$				
	\Rightarrow time = 0.457 (seconds)				
		(4)			

(14 marks)

Notes:

(a)

M1: Use of $T = \frac{\lambda x}{a}$

M1: Dependent on the preceding M1. Equate their tensions

A1: cao

M1: Condone sign error

A1: Correct unsimplified equation in e and x A1A1

Equation with one error A1A0

A1: Full working to justify conclusion that it is SHM about the equilibrium position

(b)

B1ft: Seen or implied. Follow their e **M1:** Correct method for max. speed **A1ft:** 1.81 or better. Follow their a, ω

(c)

B1: Seen or implied M1: Use of $x = a \cos wt$

M1: Correct strategy for the required interval

A1: 0.457 or better